

Post-Combustion CO₂ Capture for Existing PC Boilers by Self-concentrating Absorbent

• Funding Opportunity Number: DE-FOA0000131

Area of Interest B2:

Solvents

Bench-Scale Development of
 Post-combustion CO₂ Capture

2010 NETL CO₂ Capture Technology Meeting, Pittsburgh, PA

Sep. 13-17, 2010

• Principal Investigator:

Dr. Liang Hu, 3H Company

• Project Manager:

Dr. Gerald Choi, Nexant, Inc.

DOE Project Manager:

Mike Mosser

• Participants:

E-ON U.S.

Electric Power Research Institute (EPRI)

Nexant, Inc.

University of Kentucky

3H Company

3H Company

- 3 H Company is an start-up technology company, located on the campus of University of Kentucky, Lexington, KY
- The core business is research and development (R&D) of CO₂ capture technologies

Conventional Solvent-Based CO₂ Capture Process is Very Energy Intensive

- Energy components: heat of reaction, sensible heat and vaporization heat
- Significant energy savings can be achieved with reduced solvent recirculation, and heat loss

3H 'Self-Concentrating" CO₂ Capture Process

- The absorbent after absorbing CO₂ splits into two phases, CO₂ rich phase and CO₂ lean phase. After separating the two phases, CO₂ rich phase is sent to regeneration. After regeneration, the regenerated CO₂ rich phase combines with CO₂ lean phase to form absorbent to complete the cycle.
- Process demonstrated in the laboratory for specific absorbent/solvent pairs in bench scale vessel and scaled-model packed column.

The difference between 3H and a Conventional MEA CO₂ Capture process

Benchmark MEA Absorption

Self-Concentrating Absorption

Conceptual Flow Scheme of a 3H 'Self-Concentrating" process

3H's Patents

- U.S. Patent No. 6,969,418, (11/2005)
- U.S. Patent No. 7,541,011, (06/2009)
- U.S. Patent No. 7,718,151, (06/2010)
- 5 pending patents

Preliminary Laboratory Results (CO₂ Absorption Rate)

[Conditions: 25 °C; P_{CO2} at 1 atm.; liquid agitation speed of 60 rpm; liquid volume=900 ml]

Preliminary Laboratory Results (Heat of Regeneration)

- Benchmark MEA absorbent (30% aqueous solution)
- 1934 Btu/lb of CO₂

- 3H Technology
- Absorbent 1
 587 Btu/lb of CO₂ (or 30% of Btu/lb of MEA)
- Absorbent 2
 287 Btu/lb of CO₂ (or 15% of the Btu/lb of MEA)

TGA Result for Concentrated CO₂ Rich Phase

Preliminary Laboratory Results (Regeneration at Lower Temperature)

Benchmark MEA absorbent (30% aqueous solution) Self-concentrating absorbent

• 120 °C

• 90 °C

Preliminary Laboratory Results (CO₂ Loading Capacity)

Absorbent

CO₂ Loading Capacity

• Self-Concentrating Absorbent 0.27g CO₂/g absorbent

• Benchmark MEA 0.036g CO₂/g absorbent (20 % MEA)

• The CO₂ loading capacity was measured at 25°C and 1 atm (99.9 % CO₂). The CO₂ loading capacity for benchmark MEA absorbent was taken from literature. The results show that the CO₂ loading capacity by the self-concentrating solvent is 7.5 times higher than that by Benchmark MEA absorbent.

Objectives of the Current DOE Funding Opportunity

- Experimentally and analytically confirm the technoeconomic feasibility of the 'Self-Concentration' CO₂ Capture Process
- Develop an engineering design to construct and operate a slip-stream demonstration facility at one of E-ON's power plants in the U.S. as the next stage of technology development

Two-Phase R&D Approach

- Phase I is to focus on continuing laboratory screening experiments to identify different absorbent/solvent combinations that can exhibit the 'self-concentrating' CO₂ absorption effect, and conduct fundamental absorption/regeneration rates, physical and chemical property measurements to allow its process design and techno-economic feasibility to be evaluated.
- Phase II is to focus on conducting experiments to demonstrate the process under dynamic column testing conditions and to develop a process design package for a slip stream testing facility at a E-ON site.

Teaming Arrangement

- 3H Company patent owner and developer of the Phase Transitional Absorption CO₂ capture technology
- Electric Power Research Institute (EPRI) research arm of electric utility industry
- E.On U.S. a U.S. subsidiary of E.ON, an electric utility company headquartered in Germany
- University of Kentucky (Advanced Science and Technology Commercialization Center) – the institution where 3H also has its research own laboratory
- Nexant, Inc. a global energy consulting company

Project Organization

Program Funding Supports

- DOE
- Energy Power Research Institute (EPRI)
- E-ON U.S.

THANK YOU!

Dr. Gerald Choi, Nexant, Inc.

Mr. Brice Freeman, EPRI

Mr. John Moffert, E-ON/US

Mr. Mike Mosser, Andy Aurelio and Tim Fout,

DOE NETL

and

DOE NETL for the funding support